Report of Humbodt University Berlin (Team
Name: Humboldt Heroes)

Prof. H. D. Burkhard, Dr. M. Ritzschke, Dr. F. Winkler,
Dr. M. Werner, A.Georgi, U. Dueffert, H. Myritz

14th September 1999

Contents
1 Overview 2
2 Strategy 2
3 Algorithm 3
3.1 Walking, and Posture control 3
3.2 Vision (Color recognition and how to make color table) 4
3.2.1 Generating of CDTs with a colour simulation tool 4
3.3 Localization o 9
3.4 General behaviorso 9
4 Agent Architecture (or how the architecture is constituted of
objects.) 12
5 Appendix 12

1 Overview

The team members include students as well as members of the teaching stuff from
the Institute of Informatics at the Humboldt University.

They represent the groups of Artificial Intelligence, Responsive Computing, and
Signal Processing, respectively.

It was the aim of the project to combine the skills of these disciplines to program
football playing legged robots.

An underlying idea was to use the experiences from the simulation league for
the general structure of the robot software. We still think that this concept is
realistic. But the restricted time forced us to use a very simple reactive approach
for the RoboCup 1999.

Our general research interests can be described as follows:

We are using methods from Distributed Al for knowledge processing and control,
based on mental models of deliberation. We are interested in the development of
skills on higher level decision protocols using methods from Machine Learning,
especially from Case Based Reasoning.

We are specifically interested in developing normal consensus protocols, collision
avoidance protocols and would like to develop new models of faults, e.g., the
opposing soccer team would be considered as a new type of a fault.

We are interested in novel algorithms for image processing and their implementa-
tion in embedded systems. We would like to apply parallel computing structures
for image processing using the pixel-bit parallelism principles of distributed arith-
metic. Scalable resolution allows simultaneous suppression of noise, sharpening
of discontinuities and labelling of important data.

2 Strategy

We have experience in the design of agent architectures for the simulation league,
where we have used belief-desire-intention approaches. There we have developed
a couple of basic skills (e.g. for kicking, dribbling, ball interception). The choice
of desires and intentions is based on utility calculations, which lead to individual
plans on the base of the available skills. Cooperation is performed using the
known behaviors of team mates.

We already have some experience with robots where robots need to cooperate
to execute a specific task. Our approach is based on CORE (COnsensus for

Report of Humbodt University Berlin 3

REsponsiveness) middleware which was developed by our group for a cluster of
workstations. In this project we will add an extra level of difficulty by modeling
hostile faults. We also plan to use sophisticated search techniques such as Tabu
Search and Simulated Annealing to develop a strategy and decide on particular
moves.

Furthermore, we have some experience in hardware/software co-design and im-
plementing low level signal processing procedures for recognition tasks both in
hardware and in software.

We got some experience in implementation of effective control methods from
experiments with the minirobot system KHEPERA. So we could make compar-
isons between decision- rules-controller and fuzzy-logic-controller.

3 Algorithm

We have distinguished four main parts which we call Cortex, Brain, Body, and
Communication. Messages are passed between these modules according to the
underlying control structure.

3.1 Walking, and Posture control

The general idea is to transmit the plans computed by the Brain to the Body and
performed it by the available skills. The Body controls the movement of the legs
in order to turn, move, kick etc. Additionally, there exists a direct information
flow between Cortex and Body for immediate actions, e.g., for keeping track of
the ball. This imposes some rudimentary layered architecture.

Realization: We did not develop our own skills. This was a real drawback since
the usage of the available skills (LE2 module) caused several problems. The
main disadvantage was a missed possibility to interrupt a movement in process.
Another disadvantage was a lack of movements’ precision.

We tried to overcome these disadvantages by several means:

e To interrupt a movement, we insert an interception function between LE2
module and the robot module. Its task was to intercept outgoing commands
and to report success to the LE2 module.

e To improve the real-time behavior, we used a priority queue to transmit
commands to the body. Sent but not yet executed command that became
superfluous are throw away.

0 2 100 Saturation
Lightness L
100 | CDT contents
5 §6¢; _‘ H Hue

Figure 1: CDT-contents in the HLS space

e Critical parts of a movement are executed in the step-wise mode. That
shall increase the movement’s accuracy.

However, the creation of a real-time walking and posture control is a mayor
objective to become an appropriate competitor in the next competition.

3.2 Vision (Color recognition and how to make color table)

The Cortex uses the Color Detection Engine to identify the objects in the image
by common procedures of image-processing to find the object parameters, e.g.
position, width, center-point. The control of head motions is subject of the Cor-
tex.

3.2.1 Generating of CDTs with a colour simulation tool

It is well known, there are some possibilities to describe the colour in a picture.
Common colour spaces are for instance RGB, YUV (the PAL/European standard
for colour television broadcasting) and HLS(Fig.1), where H is for the Hue (the
H value is a degree value through colour families), L for Lightness (1 = white,
0 = black) and S fore Saturation (that is the degree of strength of a colour -
greater is S, the purest is the colour).

The robot-eye use the YUV space and so we can analyze the YUV-values in a
robot-image. But we want to create CDTs for a wide range of lightness/darkness
and of saturation, because the robot sees different colours in the pictures if he
looks from different viewpoint to the same objects. On the other side we found
in our testing-period, that every robot had from the same viewpoint under the
same light conditions little different YUV-values.

Therefore we realize a way to develop our CDT’s with four steps:

Step 1:

Report of Humbodt University Berlin D

Shooting session to get some images from all relevant objects (ball, goals, player-
dress, landmarks), we use different viewpoints and - if enough time, all our robots.

Step 2:(Fig.2)

Analyzing of the YUV values and transformation via RGB in the HLS space.
Our tool allows us to use the mouse for moving a reticule over the object. With
the help of the statistical componente we get for H,L.,S the mean value and the
standard deviation.

Step 3:

Now we use a second tool (Fig.3) to simulate possible combinations of HLS around
the mean values of H,LL,S - with the help of random numbers of the constant dis-
tribution like radio noise. Every generated HLS-point (we use ; 1000 points) will
be transformated in the YUV space and the resulting borderlines of YU and YV
plane built our CDTs, which we can save in a file(Fig.4).

Step 4:

Checking: We check the quality of our CDTs with a further program using ori-
ginally robot-images.

This tool allows - if it is necessary - manually corrections of the CDTs.

Figure 2: Analyzing Tool

Report of Humbodt University Berlin

HLS to RGE and YUY - Space.vi

Fil= Edit Operate Windows Help

M|

— Farbgenerator fiir Hunde-Color-Detection-Tables (15.7.99)] or-line-Grafik ein| ﬂ
. H+R -
60— B00-7 1.0 H— —
EZI el e 2
240~ RauschenH[g'j'- i |
L 5'- 120,0~ bkl ¢ *5h
120 :]4 02 ’W
n- 00-2 no-U 4
- i L+R
1.0-7 H; 20-m 05-m U B
. :‘ Mt
e e 5=y nz- 852955
UE-1| Rauschen L |
1.0-| | 00| [z53
04-4 4 RGE Farbe
e || oo- =360 o
0o-U 0o-L g5l pink
20_::'5 = 3UU|rir|1aa ents
: 0.70 20-m 05— -
il AT YL RY 04D
1.5- E [o24 blau
10-| Pauschens| - 0.2- | ymong WEDm]DJ
- | 5 5 an
“LT::" EI‘_| 10 oo ’E?—| 1.H | uod S PrAmmetre. E{nua jfan
i 05-| | -02- einstellen, i —

i - 120 griin
o= 00- 05s 2. Rauschanteil wihlen, B
= : o 3 Clear COT & GAE

i) 4. simulieren lassen (>1000 i
Farbtemperratur ﬂ DU Durchlautal (! I | arange
el A L 100 150 200 250 M-0 rof
Scale |CIearCDT| |SAVE as | Y
st P2
1,50 -
R fertig:| [Orange: H=23+/-8; L=0,34+/-0,16; S=0,70+/-0.20; Scale:1,50; Temp: D | =
Kl | LH/

Si0orange:

{

ta

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

N
N
N

oo ooooo oo
-

oo oooooood
-

oo ooooo oo
-

[]
-
-
[]
-

, 195,
, 20z,
163, 205,
166, 208,
171, 224,
176, 229,
173, 232,
175, 241,
179, 236,
187, 248,
186, 253,
191, 255,
197, 25z,
196, 252,
197, 255,
203, 255,
202, 255,
200, 255,
197, 255,
208, 249,
223, 243,
o, o, o,

=
o =1
Ly

oo oooooood

]

H=z25+/-5:

N

N

N

N

N

N

N

N

N

39,

L=0,39+/-0,18; 5=0,74+/-0,22;

104,
103,
102,
99,
a7,
95,
93,
20,
20,
85,
54,
83,
g1,
78,
77,
77,
g1,
g1,
78,
67,
51,

Figure 4: The generated CDT

Soalerl,50;

Temp :

]

Report of Humbodt University Berlin 9

3.3 Localization

The robot had to stop each time he tries to localize himself on the field. Then he
turns his head in a predefined way to a 180 degree angle, all seen flags and goals
are stored.

The dog can now calculate his own position and body direction with these in-
formations.

For more details please look at appendix.

The calculations are most of the times correct, only if the number of seen flags is
very low or the distance to a flag or a goal is quite wrong, than the calculation
could went wrong very hard.

A hard time of seconds must passed until the next localization should be ex-
ecuted.

3.4 General behaviors

Idea: The software architecture of the Brain is oriented on mental modelling
of agents (BDI), which is used by AT Humboldt in the virtual RoboCup. It
transforms the received data into an internal world representation (“belief”). Tt
identifies possible options (“desire”) and commits for useful plans (“intention”).

Actually, we did not finish the work on this concept for RoboCup. Instead,
we used a very simple reactive approach:

Look for the ball

Run to ball

Search and position for opponent goal
Go with the ball to opponent goal

Kick if you are near the opponent goal

10

search for ball
scanning with head)
turning with legs

opponent
god ball isfound

turning to ball until ball isin adirect line
with dog direction

[i if ball isin right direction to dog
dog timet +n run to ball
i 1
— —
] dog —
i T T
timet

Figure 5: Search for Ball and turn to ball

if bal isin aminimum distance
timet+n search the opponent goal
1 1
Opponent ‘ | dog —
’ Ga) L]
g _ _ turn around the ball
[] A
(] 1)
) are ball, dog and opponent goal on oneline
dog go for goal
(] 1
timet

Figure 6: Go to ball and turn around ball

opponent
goa

Report of Humbodt University Berlin

timet+n+1

ball movement

timet+n

dog

ball and dog movement

go with ball to opponent goal

if goal isin aminimum range

kick

Figure 7: Go with ball and kick

11

timet

dog

12

movement commands
(head)

i (legs, tail)

informations

environment
— Body —— Servo motors

\/\/

target for search (head) vaidation
Cortex Brain Body
Sensor component evaluating and planing component acting component
totally management of head activation of all servo motors

Figure 8: Agent architecture (without comunication, because it was not suppor-
ted)

4 Agent Architecture (or how the architecture
is constituted of objects.)

We have distinguished four main parts which we call Cortex,
Brain, Body, and Communication (Fig.8). Messages are passed between these
modules according to the underlying control structure.

5 Appendix
algorithm for computation of own bodydirection (parts):

double Field::calculateOwnBodyDir()

// Shortcuts: theFirstBestFlag: f1, theSecondBestFlag: {2
SeenObject™ f1 = theFirstBestFlag;

SeenObject™ f2 = theSecondBestFlag;

Report of Humbodt University Berlin

// Shortcuts: seen angle of f1: beta, seen angle of {2: alpha
double beta = f1->dir();
double alpha = f2->dir();

// Shortcut: seen angle between f1 and f2: gamma
double gamma = normalizeAngle(beta - alpha);

if(gamma < 0) // skip flags f1 and {2
f1 = theSecondBestFlag;

f2 = theFirstBestFlag;

beta = f1->dir();

alpha = f2->dir();

gamma = -gamma,

Vector vectorFromflTof2 =

theFlagPositions| f2->id() | - theFlagPositions| f1->id() |;
// Shortcut: length between the flags f1 and 2: ¢

double ¢ = vectorFromf1Tof2.length();

double sinEpsilon = (f2->dist() / ¢) * sin(gamma);
double sinDelta = (f1->dist() / ¢) * sin(gamma);

// calculating bodyDir by two different ways
double firstBodyDir = normalizeAngle(PI - (epsilon + beta));
double secondBodyDir = normalizeAngle(delta - alpha);

// calculating average value of both body directions
double bodyDir = (firstBodyDir + secondBodyDir) / 2;
if(absolute(bodyDir - firstBodyDir) ; PI/2)

bodyDir = normalizeAngle(bodyDir + PI);

// turning bodyDir to the angle of the line between the flags f1 and {2
bodyDir = normalizeAngle(bodyDir + vectorFromflTof2.angle());

return bodyDir;

13

